US009262290B2

a2z United States Patent (10) Patent No.: US 9,262,290 B2
Iwasaki et al. (45) Date of Patent: Feb. 16, 2016
(54) FLASH COPY FOR DISASTER RECOVERY 7,765433 B1* 7/2010 Krishnamurthy 714/42
(DR) TESTING 7,921,268 B2 4/2011 Jakob
7,991,822 B2 8/2011 Bish et al.
. . . . 8,019,723 B2 9/2011 Bishet al.
(71) Applicant: Internathnal Business Machines 8.020.037 BL* 9/2011 Schwartz etal. ... 714/63
Corporation, Armonk, NY (US) 8,234,464 B2 7/2012 Bishetal.
8,327,106 B2 12/2012 Peake et al.
(72) Inventors: Norie Iwasaki, Kanagawa (JP); 8,359,491 Bl1* 1/2013 Bloomsteinccc.cooo.... 714/6.3
Katsuyoshi Katori, Kanagawa (JP); g"s‘;?’g;g Eé ;ggg g?tﬁnzto;ll etal.
i i . 3) 1S € .
Koichi Masuda, Yokohama (JP); 2012/0151273 Al* 6/2012 BenOretal. ..o, 714/41
Takeshi Nohta, Tsukuba (JP); Joseph 2012/0290805 Al 11/2012 Bish et al.
M. Swingler, Tucson, AZ (US) 2012/0324183 Al* 12/2012 Chiruvoluet al. 711/162
2014/0215255 Al* 7/2014 Zaheer_ 714/1
(73) Assignee: International Business Machines 2015/0154085 Al 6/2015 TIwasaki et al.
Corporation, Armonk, NY (US) 2015/0154271 Al 6/2015 Iwasaki et al.
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 91 days Iwasaki et al., U.S. Appl. No. 14/094,689, filed Dec. 2, 2013.
o . (Continued)
(21) Appl. No.: 14/094,681
(22) Filed: Dec. 2, 2013 Primary Examiner — Gabriel Chu
65) Prior Publication Dat (74) Attorney, Agent, or Firm — Zilka-Kotab, PC
rior Publication Data
US 2015/0154084 A1 Jun. 4, 2015
57 ABSTRACT
D IG110t6211 100 (2006.01) In one embodiment, a system includes a processor and logic
GO6F 11/26 (200 6. o1) integrated with and/or executable by the processor, the logic
GO6F 11,22 (2006.01) being configured to cause the processor to define a disaster
GOG6F 11/14 (200 6. 01) recovery (DR) family, the DR family having one or more DR
5 US.Cl ’ clusters accessible to a DR host and one or more production
(52) CPC ’ GOGF 11726 (2013.01): GO6F 112215 clusters accessible to a production host, wherein the DR host
""""" '2'013 01): G06P(' 11/261)’2013 01): GO6F is configured to replicate data from the one or more produc-
]]/(]446 ’ 20)1’3 01): GO6F 22(0]/84.1 2)613 01 tion clusters to the one or more DR clusters, create a backup
. : (s); (01) copy of data stored to the one or more production clusters,
(58) Field of Classification Search store the backup copy to the one or more DR clusters, estab-
None o . lish a time-zero in the DR family, and share a point-in-time
See application file for complete search history. data consistency at the time-zero among all clusters within the
(56) References Cited DR family. Other systems, methods, and computer program

U.S. PATENT DOCUMENTS

6,732,294 B2* 5/2004 Mackroryetal. ... 714/25
7,302,540 B1* 11/2007 Holdmanetal. 711/162

products are presented for DR testing, according to more
embodiments.

20 Claims, 7 Drawing Sheets

400

Define a DR family, the DR family comprising one
or more DR clusters accessible to a DR host and
402 | one or more production clusters accessible o a
production host, wherein the DR host is
configured to replicate data from the one or more
production clusters to the one or more DR
clusters

40\1{Create a backup copy of data stored to the one or]

more production clusters
4({6'{

Store the backup copy to the one or more DR
403_{
410 Share a point-in-time data consistency at the
time-zero among all clusters within the DR family

clusters

¥

Estabiish a time-zero in the DR family for DR]

testing

US 9,262,290 B2

Page 2
(56) References Cited Non-Final Office Action from U.S. Appl. No. 14/094,689, dated Aug.
20, 2015.
OTHER PUBLICATIONS Notice of Allowance from U.S. Appl. No. 14/094,689, dated Nov. 20,
2015.

Iwasaki et al., U.S. Appl. No. 14/094,684, filed Dec. 2, 2013.
Non-Final Office Action from U.S. Appl. No. 14/094,684, dated Sep. . .
8,2015. * cited by examiner

U.S. Patent Feb. 16, 2016 Sheet 1 of 7 US 9,262,290 B2

/‘IO

12+ Computar System/Server 8
¢
38 Memory 34
RAM « o
16 Storage
\ System
Processing Cache |« :
Linit ¢ 40~
F 32 ”
sl 424771
18] T 2
24 22
Y . / 20
¥ /
Display [et» Vo Network Adapte
sy e Interface(s) wor pier
A
14
.
External
Device(s)

FIG. 1

U.S. Patent Feb. 16, 2016 Sheet 2 of 7 US 9,262,290 B2

100

120
138

128

L
125 EE:][:E}

132

121

125
130

122

FIG. 2

Ve "Old

S MR AL MR AR MR SBBRL SRR b MR BRRRL bbb AL bbb b R SMRML BRSPS AP b e Wb bR N AR R bR MR SERRE bRE bR SRR SRR MR S RS b R b

US 9,262,290 B2

Sheet 3 of 7

Feb. 16, 2016

U.S. Patent

is!!.l.m;

243

34v6x0 [~ 10v5x0 | 00v5x0_

ISOH #d

8ie pLe Zie
{£10) € 18N0 (110 1 HejsmD {0710} 0 J81snyD
L gec vt e et

L0000V L0000V 00000y LO000Y 00000V

YQavL YOV YOvL YQAV.L

3358x0 || vogsxo | oosexo

1SOH LORONPOIY

\L

80¢g

g¢ "Old

US 9,262,290 B2

Sheet 4 of 7

Feb. 16, 2016

U.S. Patent

818 PLE Zie
{£10) ¢ 81BN0 {110} 1 181800 (0710) 0 818D
¥<L FA%o 3z¢ vt FAA% 0és

L0000V/ \DODOOY LOO0OV, DODO0Y, LO000Y, 00000V,

T Y

11 0000Y/

YaY.L
44PGX0 || LOPSXO | 00¥SXG 44Ge%0 |~ B0GEX0
ISOH HQ 1SOH UORONPOI
20¢ 80¢

00E

US 9,262,290 B2

Sheet S of 7

Feb. 16, 2016

U.S. Patent

44P6%0_

~ [ovsxo | oorexo

IS0H M

_

808

T rosaxo

1501 UONONPOIA

\\u

2115

US 9,262,290 B2

Sheet 6 of 7

Feb. 16, 2016

U.S. Patent

00000V LO0G0Y

44p5%0 |1 10vSx0 | 00p5x0

ISOH HA

\

80€

4468%0 || 10580 | 0ogex0

1SOH UOHONPOId

\\su

80¢g

U.S. Patent Feb. 16, 2016 Sheet 7 of 7

402

404

4{3“5“, Store the backup copy to the one or more DR
clusters
40&: Establish a time-zero in the DR family for DR
testing
) ¥
4& Share a point-in-time data consistency at the

or more DR clusters accessible to a DR host and
one or more production clusters accessible to a
production host, wherein the DR host is
configured to replicate data from the one or more
production clusters o the one or more DR
clusters

v

(Create a backup copy of data stored to the one or
more production clusters

y

v

v

time-zero among all clusters within the DR family

FIG. 4

US 9,262,290 B2

US 9,262,290 B2

1

FLASH COPY FOR DISASTER RECOVERY
(DR) TESTING

BACKGROUND

The present invention relates to data storage, and more
particularly, to systems and methods configured to enable
efficient flash copy for disaster recovery (DR) testing.

Some data storage systems are capable of creating a point-
in-time copy of virtual tapes for DR testing. One such data
storage system is IBM’s TS7700 Grid Architecture. This
capability allows business operations to help simulate and test
the ability to resume in the event of a product or a site failure.
In such a grid configuration, up to six clusters (or sites) are
interconnected and are configured to replicate data created on
any of the clusters in the configuration. As part of a total
systems design, business continuity procedures are devel-
oped, to instruct information/technology) personnel in the
actions that should be taken in the event of a system failure.
Testing of those procedures (also known as DR testing) is
performed either during initial installation of the system and/
or at some regular interval after initial installation.

During the DR testing, users make an attempt to simulate a
true disaster when one or more clusters are unavailable at a
first cluster or site (such as a production cluster or site). A DR
host system is restored and cluster data is accessed through a
user’s predefined DR cluster or clusters. Even though the
predefined cluster or clusters have provided some DR testing
features, generally, to help the user simulate a true disaster,
there are still a few problems related to the DR testing with
such clusters.

One such problem is the ability to support a complete set of
point-in-time copies of all virtual tapes for DR testing use
only. In a real world case, the point in time in which the
production cluster (or production environment) becomes
unavailable is not predictable, thus the state of the cluster or
clusters is unpredictable with respect to the consistency of the
replicated data. Data may have not yet completed replication
to a DR cluster or site, or the replication for some data may not
have even started. With conventional DR testing, copies con-
tinue after the DR testing has started, which provides mis-
leading results because the copy would have stopped and the
data not be available had a real disaster taken place. In addi-
tion, if copies are not available on the DR cluster or clusters,
the DR host system will simply access remote content
through the grid, which also typically is not possible in a true
disaster scenario. Also, data on a production cluster which is
modified via the production host will also be modified on the
other DR cluster(s) or site(s) of the grid.

In contrast to this capability, users prefer to mimic the
consistency of the DR cluster(s) or site(s) at a time-zero (time
of'the simulated disaster). Only data consistent within the DR
cluster(s) or site(s) at time zero should be accessible to a DR
test host. Some users accomplish this today by disconnecting,
the DR cluster(s) or site(s) from the production cluster(s) or
site(s). But most users require the actual production data to
still continue to replicate to the DR cluster(s) or site(s) so that
in the event of a true (not simulated) disaster, this data is
properly backed up.

Flash copy concepts exist in some storage products which
offer business continuance testing, but the consistency aware-
ness is limited to a single node or a cluster. However, some
storage products offering grid architecture allow a user to
have more than one cluster or site representing DR data. A
method to flash more than one cluster/node in order to create
a composite consistency point in time is not currently avail-
able.

10

15

20

25

30

35

40

45

50

55

60

65

2

This is due to several reasons. First, daring a DR test, it is
preferred that both a DR hostand a production host are able to
mourn a virtual tape with a same identifier (such as a volume
serial number “volser”) at the same time. However, with
conventional systems, these mounts are serialized because of
how the virtual tape ownership concept operates, restricting
access to any virtual tape to only one accessing system at a
time. In other words, at any given time, only one host is
allowed to mount a virtual tape in current grid architectures.
In order to perform a DR testing as desired by users, this
protected concept of mounting a virtual tape with one host at
any given time must be relaxed or moth tied.

In addition, production hosts may change an attribute of
data or volumes, reuse data or volumes, and/or modify data or
volumes. All these use cases should not alter the time-zero
view at the DR cluster(s) or site(s). Existing flash copy solu-
tions are able to accommodate data changes, but keeping
track of volume attribute changes is not currently available in
grid architectures.

BRIEF SUMMARY

In one embodiment, a system includes a processor and
logic integrated with and/or executable by the processor, the
logic being configured to cause the processor to define a
disaster recovery (DR) family, the DR family having one or
more DR clusters accessible to a DR host and one or more
production clusters accessible to a production host, wherein
the DR host is configured to replicate data from the one or
more production clusters to the one or more DR clusters,
create a backup copy of data stored to the one or more pro-
duction clusters, store the backup copy to the one or more DR
clusters, establish a time-zero in the DR family, and share a
point-in-time data consistency at the time-zero among all
clusters within the DR family.

In another embodiment, a method for DR testing includes
defining a DR family, the DR family having one or more DR
clusters accessible to a DR host and one or more production
clusters accessible to a production host, wherein the DR host
is configured to replicate data from the one or more produc-
tion clusters to the one or more DR clusters, creating a backup
copy of data stored to the one or more production clusters,
storing the backup copy to the one or more DR clusters,
establishing a time-zero in the DR family for DR testing, and
sharing a point-in-time data consistency at the time-zero
among all clusters within the DR family.

In yet another embodiment, a computer program product
for DR testing includes a computer readable storage medium
having, program code embodied therewith, the program code
being readable and/or executable by a processor to define a
DR family, the DR family having one or more DR clusters
accessible to a DR host and one or more production clusters
accessible to a production host, wherein the DR host is con-
figured to replicate data from the one or more production
clusters to the one or more DR clusters, create a backup copy
of'data stored to the one or more production clusters, store the
backup copy to the one or more DR clusters, establish a
time-zero in the DR family, and share a point-in-time data
consistency at the time-zero among all clusters within the DR
family.

Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip-
tion, which, when taken in conjunction with the drawings,
illustrates by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates a network storage system, according to
one embodiment.

US 9,262,290 B2

3

FIG. 2 illustrates a simplified tape drive of a tape-based
data storage system, according to one embodiment.

FIGS. 3A-3D show a system for replicating data, according
to one embodiment.

FIG. 4 shows a flowchart of a method, according to one
embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of illus-
trating the general principles of the present invention and is
not meant to limit the inventive concepts claimed herein.
Further, particular features described herein can be used in
combination with other described features in each of the
various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an,” and “the”
include plural referents unless otherwise specified. It will be
further understood that the terms “comprises” and/or “com-
prising” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, bin do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

According to some embodiments presented herein, grid
architectures may be enhanced to allow for the following
capabilities: defining specific groups of clusters and/or sites
(“a DR family”’) which share a copy of data from one or more
virtual, tapes (“backup copy”), making a point-in-time copy
(“snapshot,” which may be a flash copy or some other suitable
point-in-time copy known in the such) of a virtual, tape at
time-zero, managing the ownership of the snapshot indepen-
dent of the ownership for the live virtual tape instance (which
keeps changing) and the backup copy, making a virtual tape
comprising the snapshot accessible to the DR host only when
the snapshot is made consistent before the time-zero, using
the live copy of the virtual tape instead of a snapshot to satisfy
a private/specific mount request from a DR host when there is
no consistent snapshot available within the DR family, and
integrating selective device access control with the snapshot
function (which allows multiple hosts to view their own set of
a snapshots of virtual tapes).

In one general embodiment, a system includes a processor
and logic integrated with and/or executable by the processor,
the logic being configured to cause the processor to define a
disaster recovery (DR) family, the DR family having one or
more DR clusters accessible to a DR host and one or more
production clusters accessible to a production host, wherein
the DR host is configured to replicate data from the one or
more production clusters to the one or more DR clusters,
create a backup copy of data stored to the one or more pro-
duction clusters, store the backup copy to the one or more DR
clusters, establish a time-zero in the DR family, and share a
point-in-time data consistency at the time-zero among all
clusters within the DR family.

In another general embodiment, a method for DR testing
includes defining a DR family, the DR family having one or
more DR clusters accessible to a DR host and one or more
production clusters accessible to a production host, wherein
the DR host is configured to replicate data from the one or
more production clusters to the one or more DR clusters,
creating, a backup copy of data stored to the one or more

15

20

30

40

45

60

4

production clusters, storing the backup copy to the one or
more DR clusters, establishing a time-zero in the DR family
for DR testing, and sharing a point-in-time data consistency at
the time-zero among all clusters within the DR family.

In yet another general embodiment, a computer program
product for DR testing includes a computer readable storage
medium having program code embodied therewith, the pro-
gram code being readable and/or executable by a processor to
define a DR family, the DR family having one or more DR
clusters accessible to a DR host and one or more production
clusters accessible to a production host, wherein the DR host
is configured to replicate data from the at one or more pro-
duction clusters to the one or more DR clusters, create a
backup copy of data stored to the one or more production
clusters, store the backup copy to the one or more DR clusters,
establish a time-zero in the DR family, and share a point-M-
time data consistency at the time-zero among all clusters
within the DR family.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment an entirety software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of to computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-

US 9,262,290 B2

5

bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Moreover, a system according to various embodiments
may include a processor and logic integrated with and/or
executable by the processor, the logic being configured to
perform one or more of the process steps recited herein. By
integrated with, what is meant is that the processor has logic
embedded therewith as hardware logic, suchas an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), etc. By executable by the processor, what is
meant is that the logic is hardware logic, software logic such
as firmware, operating system, etc., or some combination of
hardware and software logic that, is accessible by the proces-
sor and configured to cause the processor to perform some
functionality upon execution by the processor. Software logic
may be stored on local and/or remote memory of any memory
type, as known in the art. Any processor known in the art may
be used, such as a software processor module and/or a hard-
ware processor such as an ASIC, a FPGA, a central process-
ing unit (CPU), an integrated circuit (IC), etc.

Referring now to FIG. 1, a schematic of a network storage
system 10 is shown according to one embodiment. This net-

20

25

30

40

45

55

65

6

work storage system 10 is only one example of a suitable
storage system and is not intended to suggest any limitation as
to the scope of use or functionality of embodiments of the
invention, described herein. Regardless, network storage sys-
tem 10 is capable of being implemented and/or performing
any of the functionality set forth hereinabove.

In the network storage system 10, there is a computer
system/server 12, which is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable fir use with computer system/server 12
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor systems microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe,
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in the
network storage system 10 is shown in the form of a general-
purpose computing device. The components of computer sys-
teny/server 12 may include, but are not limited to, one or more
processors 16 or processing units, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 may include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
ten/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 may be
provided for reading from and writing to a non-removable,
non-volatile magnetic media—not shown and typically
called a “hard disk,” which may be operated in a HDD.
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “floppy disk™), and an optical disk drive for reading from or
writing to a removable, non-volatile optical disk such as a

US 9,262,290 B2

7

CD-ROM, DVD-ROM or other optical media may be pro-
vided. In such instances, each may be connected to bus 18 by
one or more data media interfaces. As will be further depicted
and described below, memory 28 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments described herein.

Program/utility 40, having a set (at least one of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter systeny/server 12 to communicate with one or more
other computing devices. Such communication may occur via
Input/Output (I/O) interfaces 22. Still yet, computer system/
server 12 may communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via net-
work adapter 20. As depicted, network adapter 20 communi-
cates with the other components of computer system/server
12 via bus 18. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer system/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

FIG. 2 illustrates a simplified tape drive 100 of a tape-based
data storage system, which may be employed according to
various embodiments. While one specific implementation of
a tape drive is shown in FIG. 2, it should be noted that the
embodiments described herein may be implemented in the
context of any type of tape drive system.

As shown, a tape supply cartridge 120 and a take-up reel
121 are provided to support a tape 122. One or more of the
reels may form part of a removable cassette and are not
necessarily part of the tape drive 100. The tape drive, such as
that illustrated in FIG. 2, may further include drive motor(s)
to drive the tape supply cartridge 120 and the take-up reel 121
to move the tape 122 over a tape head 126 of any type.

Guides 125 guide the tape 122 across the tape head 126.
Such tape head 126 is in turn coupled to a controller assembly
128 via a cable 130. The controller 128 typically comprises a
servo channel 134 and data channel 136 which includes data
flow processing. It controls reel motion (not shown in FIG. 2)
and bead functions, such as track following, writing, reading,
etc. The cable 130 may include read/write circuits to transmit
data to the head 126 to be recorded on the tape 122 and to
receive data read by the head 126 from the tape 122. An
actuator 132 moves the head 126 to a set of tracks on the tape
122 in order to perform a write or a read operation.

In one embodiment, the tape drive 100 may comprise a data
buffer 138 which is accessible by the tape drive 100 and the
controller 128. This data buffer 138 may be split into one or
more sections, with one section being a reserved data buffer
140 to be used for storage of partial data sets during reading
operations from the tape 122.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

An interface may also be provided for communication
between the tape drive 100 and a host (integral or external) to
send and receive the data and for controlling the operation of
the tape drive 100 and communicating the status of the tape
drive 100 to the host, as would be understood by one of skill
in the art.

Some terms used herein are now described according, to
one embodiment.

A backup copy is a copy of a virtual tape. All virtual tape
copies in a current or previous release are referred to as
backup copies, while the latest generation of the virtual tape
is the live copy. This is the live instance of a volume in a
cluster. Meaning, it is a volume that may exist in the live
read-write file system or an instance that may be modified by
replication and/or production activity.

A flash copy is a snapshot of a backup copy or live copy at
a certain time. The content in the flash copy is fixed and does
not change even if the live copy or backup copy are modified.
A flash copy may not exist if a live volume or backup copy
was not present at the certain time. In addition, a flash copy
does not imply consistency with the live copy, as a backup
copy may have been used for the flash copy and was incon-
sistent with the live copy at the certain time, which would
result in a flash copy which is inconsistent with the live copy.

A disaster recovery (DR) family is a set of clusters which
serve a purpose of disaster recovery. Chic to seven clusters
may be assigned to a DR family, in one approach. Each DR
family may have a unique index value, 1 to 8 (total 8) in this
approach. The DR family may be used to determine which
clusters should be affected by a flash request via a host com-
mand line or web interface It also informs microcode of
which clusters are applicable during ownership negotiation of
the ownership of a flash copy or the selection of a cluster to
satisfy a virtual tape mount which targets a flash copy. A
cluster may exist in more than one DR family at a time. Each
DR family has its own time-zero and all clusters in the same
DR family share the time-zero and other DR family attributes.

A flash family (FF) is a subset of or all clusters in a DR
Family. Those clusters which at time zero implemented a
flash copy of all relevant volumes.

A write protect mode is when writing is prohibited on a
cluster, so that any host commands fail when they are issued
to logical devices in that cluster and attempt to modify a
volume’s data or attributes. The flash copy is created on a
cluster when it is in the write protect mode only in one
approach.

Write protect exclusion category indicates all volumes that
are not in write protect mode. This category is usually used to
allow a DR host to run write jobs on write protected cluster.

Write protected category indicates all volumes that are in
write protect mode. The microcode may view volumes
assigned to this category as write-protected.

Time-zero may indicate a time when a flash copy is gen-
erated within a DR family for DR testing, e.g., it simulates a
disaster starting. The time-zero mimics the time when real
disaster happens, and a user may establish the time-zero using
a host console command or web interface, in some
approaches.

Virtual tape user data indicates data of a virtual tape that is
used by a customer to store information. It may be stored in a
UNIX file system or some other suitable storage system. It is
contrasted to virtual tape metadata, which stores attributes of
a virtual tape, such as category, constructs, data level, own-
ership, etc. These may be stored in a database.

A DR family is a set of clusters or sites in a grid architecture
which are configured for disaster recovery operations. Each
cluster or site may comprise one or more storage nodes which

US 9,262,290 B2

9

represent a storage device. A cluster or site may exist in more
than one DR family at a time, according to one approach.
Each DR family has its own time-zero representing the time at
which the copy was made that is represented by the DR
family, and all clusters in the same DR family share the
identical time-zero, along with all other DR family attributes.
The DR family is used to determine which clusters or sites are
affected by a snapshot initiation request, which may be initi-
ated by a user or automatically according to some predeter-
mined, routine or schedule.

According to one embodiment, the value of the time-zero is
not established when a DR family is defined, and instead is
established when a user enables snapshot within the DR fam-
ily, such as via the microcode. The time-zero value is then
shared among all clusters or sites within the DR family.

When a snapshot request is issued against a DR family,
such as by a user, a point-in-time snapshot or copy of the file
system, which includes a user data portion of all virtual tapes,
is created on all clusters or sites within the DR family, accord-
ing to one embodiment. The time-zero is established when the
file system snapshot is completed within the DR family and it
is shared with all clusters or sites within the DR family. A
metadata portion of the virtual tapes are not created at this
stage, in one approach.

In order to make a snapshot of a virtual tape accessible
from a DR host, not only the snapshot of the user data portion,
but also the snapshot of the metadata portion is generated.
Some grid architectures are capable of handling four million
virtual tapes or more. It may take a much longer time to create
a snapshot of the whole database in comparison with the time
needed to create a snapshot of the user data portion only
(currently, some file systems may take a snapshot that com-
pletes within several seconds). Therefore, in one embodi-
ment, a method to create metadata of virtual tapes efficiently
is presented.

The microcode, according to one embodiment, solves this
issue by creating the snapshot of metadata selectively and
based on an event. This allows the microcode to create the
snapshot of metadata which really needs to be created, and
not all metadata indiscriminately.

In one embodiment, the point-in-time snapshot of the
metadata of a virtual tape may be created only when the
virtual tape is in a “write-protected’ state. As described above,
existing ‘selective write-protect’ functionality allows users to
define virtual tapes which are used by the DR host only. This
means the production host is unaware of the volumes, and
therefore the DR clusters do not need to make a snapshot of
such volumes. Thus, it is enough for the microcode create a
snapshot of virtual tapes assigned to write-protected catego-
ries (which are indicated as needing a snapshot taken thereof,
possibly by the user or automatically according to some
parameters or conditions being satisfied).

According to another embodiment, a point-in-time snap-
shot of the metadata of a virtual tape may be created only
when specific events occur. Not all write-protected volumes
are used in DR testing or some that are used for some DR
testing may not be used in other DR testing. Meaning, taking
a snapshot of the metadata of all virtual tapes is not required
in most DR testing. Therefore, in this embodiment, the micro-
code creates a snapshot of the metadata of a virtual tape only
when data consistency of the volume or key attributes (such as
category, type, location, etc.) of the volume is changed, or, the
DR host mounts the virtual tape. Specifically, according to
one embodiment, the microcode will create a snapshot of the

10

25

40

45

55

10

metadata of a write protected virtual tape when all the fol-
lowing conditions are true:

1. Time-zero has been established in the DR family (i.e., a
snapshot of the user data portion of the virtual tapes has
already been created),

2. One of following events occurs on the write protected
virtual tape:

a. The production host is or has modified data content
and/or key attributes of the virtual tape.

b. The DR host mounts the snapshot of the volume and
the snapshot of the metadata has not yet been gener-
ated.

The unique ownership of a snapshot may be defined and
managed independently to the ownership of an active virtual
tape (e.g., the live copy). In this embodiment, the limitation
that ownership of all copies of data is unified is overcome by
managing the ownership of a snapshot independent of the
ownership of a live copy so that a production host and a DR
host may mount a virtual tape with the same identifier (such as
avolume serial number “volser” or some other known type of
identifier understood by each component in the system) at the
same time (e.g., the production host mounts the live copy and
the DR host mounts the snapshot). This may be managed
using the microcode, as would be understood by one of skill
in the art.

As described previously, once a snapshot of the metadata is
created on a DR cluster within the DR family, the ownership
of a snapshot may be managed, such as via the microcode,
independent of a live copy because the microcode uses the
snapshot version of the metadata when it handles the snap-
shot, and not the live copy, according to one embodiment. The
microcode leaves the ownership of the snapshot virtual tape
in an “ownership undetermined” state when the snapshot of
the metadata is created first. This causes the ownership of the
snapshot virtual tape to be left in this state until accessed by a
DR host, e.g., the microcode leaves the ownership alone.
Leaving the ownership in the undetermined state until it is
“really needed” (e.g., accessed by the DR host) allows the
microcode to reduce its impact to the production host’s job
performance. Ifthe (metadata) snapshot is created by DR host
mount processing, the ownership is determined within the DR
family immediately by the ownership discovering process.
The scope of the ownership discovery process is limited to
being only within the DR family.

According to another embodiment, a point-in-time copy of
a virtual tape is ensured to be accessible from the DR host
only when the virtual tape was made consistent before the
time-zero. During a DR test, the DR clusters within a DR
family provide a view of volume consistency at the time-zero
to a DR host. This means that it is determined, such as by the
microcode, which cluster or clusters within the DR family
comprises such a copy when a DR host tries mount the snap-
shot. This embodiment allows for verification that only up-to-
date copies will be presented as a point-in-time copy, and not
some copy made previously which may be out of date and
inconsistent with the live copy or a backup copy made later
which would not mimic a true disaster.

Now referring to FIGS. 3A-3D, virtual tape mounts initi-
ated by a DR host 308 are shown according to some exem-
plary embodiments. System 300 comprises a production host
306 configured to access data on one or more production
clusters 312, 314, at a production site 302. System 300 also
includes the DR host 308 configured to access data on one or
more DR clusters 316, 318 at a DR site 304. The production
site 302 and DR site 304 are connected by a network 310, such
as grid network, WAN; etc. The production site 302 com-
prises one or more production clusters. In this exemplary

US 9,262,290 B2

11

embodiment, Cluster O (CLO) 312 and Cluster 1 (CL1) 314
are shown in the production site 302; however, any number of
production clusters may be used. The DR site 304 comprises
one or more DR clusters. In this exemplar embodiment, Clus-
ter 2 (CL2) 316 and Cluster 3 (CL3) 318 are shown in the DR
site 304; however, any number of DR clusters may be used.
Furthermore, production host 306 has access to one or more
direct access storage devices (DASDs) 344, while DR host
308 has access to one or more DASDs 346. The DASDs 344,
346 may be used to store any data useful in copying proce-
dures and/or hosting functions of the production host 306
and/or DR host 308, in various approaches.

Each production cluster may include, host, store, and/or
represent one or more instances of one or more data units. An
instance may be a file, a directory, a volume, a virtual tape, or
any other subunit of data as would be known by one of skill in
the art. One or more production clusters may comprise dupli-
cate data to one or more other production clusters. As shown
in this exemplary embodiment, CLO 312 comprises two vir-
tual tapes, virtual tape 320 having a volser of AO0000 and
virtual tape 322 having a volser of A00001, and CL1 314
comprises two virtual tapes, virtual tape 324 having a wiser of
A00000 and virtual tape 326 having a volser of A00001.
However, an number and/or type of instances of data may be
represented in each production cluster.

Moreover, each DR cluster may include, host, store, and/or
represent one or more instances of one or more data units. An
instance may be a file, a directory, a volume, a virtual tape, or
any other subunit of data as would be known by one of skill in
the art. One or more DR clusters may comprise duplicate data
(e.g., a backup copy) to data that is stored on one or more
other DR clusters and/or production clusters. As shown in this
exemplary embodiment, CL.2 316 comprises two backup cop-
ies, backup copy of volser AO0O000 328 and backup copy of
volser AO0001 330, and CL3 318 comprises two backup
copies, backup copy of volser AO0000 332 and backup copy
of volser AOO001 334. However, any number and/or type of
backup copies and/or instances of data may be represented in
each DR cluster.

Referring now to FIG. 3A, backup copy A00001 330 is
shown as being stale or out-of-date with data on virtual tape
A00001 322 or virtual tape AO0001 326. Therefore, data in
backup copy A00001 330 should not be used as an accurate
duplicate of the data stored on virtual tape A00001 322 or
virtual tape AO0001 326, which are reliable duplicates of one
another. All the other backup copies e.g., backup copy 332,
backup copy 334, etc.) on the DR clusters CL.2 316 and CL3
318 are up-to-date with their respective virtual tapes on CLO
312 and CL.1 314 from which data is duplicated.

When performing DR testing to test the preparedness of the
DR site 304, it is not desired to stop duplicating data to the DR
clusters 316, 318 because an actual disaster may take place,
and the data must be backed-up. Therefore, the data in the
backup copies (e.g., 328, 330, 332, etc.) may continue to
change during the DR testing, which provides false impres-
sions of the disaster preparedness of the DR site 304, unless
the data is somehow frozen in time.

With reference to FIG. 3B, when an actual disaster takes
place unexpectedly, it is beneficial for the DR host 308 to have
access to all the data that is stored on the production site 302
(which presumably is no longer accessible due to the disaster)
via data stored on the DR site 304. In order for this to happen,
the DR site 304 must continually update the data which is
stored in the individual DR clusters.

Therefore, in order to perform a DR test to determine how
well the data on the production site 302 is represented on the
DR site 304, and without stopping duplication efforts from

25

30

40

45

12

the production site 302, one or more snapshots (e.g., flash
copies, physical tape backup copies having virtual represen-
tations that mimic flash copies, etc.) may be created that
represent all the data stored on each DR cluster at a predeter-
mined time (e.g., a time-zero). These snapshots are indicated
by the virtual tapes having dashed lines, e.g., snapshot of
volser AOO000 336, snapshot of wiser AO0O001 338, etc. CL.2
316 and CL3 318 together now represent a flash family,
because all the data stored on CL2 316 and CL3 318 have at
least one snapshot produced thereof at a time-zero.

In one such embodiment, a time-zero may be selected
which represents a simulated disaster event occurrence time
(time at which a disaster took place), in DR testing, the DR
host 308 may attempt to access these one or more snapshots of
the data in the DR clusters 316, 318 to determine how suc-
cessful the backup copy on the DR clusters 316, 318 are in
case of an actual disaster.

When the DR host 308 issues a mount request targeting a
volume having a volser of A00000 to CL2 316, the DR host
308 may provide a snapshot of volser AOO000 336 within the
cluster to satisfy the mount request because the snapshot of
volser AO0000 336 is consistent at the time-zero, in this
scenario, CL2 316 is capable of accessing a snapshot of both
volumes A00000 and A00001, because snapshots 336 and
338 are up-to-date at the time-zero, as indicated by their white
solid tape representations.

Now a scenario where a cluster does not include an up-to-
date snapshotis described. With reference to FIG. 3C, assume
that a volume having a wiser of A00001 is requested to be
mounted. CL.2 316 is not able to satisfy the mount request by
itself because the snapshot of volser AO0O001 338 on CL.2 316
is not consistent at the time-zero, as indicated by the cross-
hatching (although the live copy version may be replicated to
the cluster 316 sometime after the time-zero and may become
up-to-date, it would still be stale, as indicated by the cross-
hatching, in backup copy of volser AO0001 330). In this
example, CL.2 316 completes the mount request targeting
A00001 by using a snapshot of volser AO0001 342 on the
other cluster, CL3 318, in the same DR family. Snapshot 342
is up-to-date and consistent at the time-zero, and therefore
may be used in DR testing. This functionality may be
achieved, in one approach, by looking at the snapshot of the
metadata within the DR family only when it is determined,
such as via the microcode, which cluster to provide, a snap-
shot to the DR host 308 with.

Now referring to FIG. 3D, a scenario where a snapshot of
a requested volume is not available and a live or backup copy
is used instead is described, in accordance with one embodi-
ment. In this scenario, assume that a request for volumes
A00000 and A00001 is issued to the DR host 308. The DR
host 308 may access the snapshot of volser AO0000 336 on
CL2 316, but the snapshot of volser AO0001 338 on CL.2 316
is inconsistent at time-zero. Also, the backup copy of volser
A00001 330 on CL2 316 is stale at time-zero. However,
another cluster CL4 348 within the DR family has a backup
copy of volser AOO001 352 which is up-to-date at the time-
zero. Therefore, CL.2 316 may access the backup copy of
volser AO0001 352 on CL4 348 to fulfill the mount request in
the DR testing. As shown, the backup copy of volser AOOO0O
350 on CL4 348 could not be used, because it is stale at the
time-zero.

Of course, the particular scenarios described in relation to
FIGS. 3A-3D are for explanatory purposes only, and any
arrangement of sites, clusters, virtual tapes, backup copies,
snapshots, and data may be used, as would be understood by
one of skill in the art upon reading the present descriptions.

US 9,262,290 B2

13

No referring to FIG. 4, a method 400 for performing DR
testing is shown according to one embodiment. The method
400 may be performed in accordance with the present inven-
tion in any of the environments depicted in FIGS. 1-3D,
among others, in various embodiments. Of course, more or
less operations than those specifically described in FIG. 4
may be included in method 400, as would be understood by
one of skill in the art upon reading the present descriptions.

Each of the steps of the method 400 may be performed by
any suitable component of the operating environment. For
example, in various non-limiting embodiments, the method
400 may be partially or entirely performed by a tape drive, a
hard disk drive, an optical drive, a controller, a hierarchal
storage manager, a storage library manager, a processor (such
as aCPU, an ASIC, a FPGA, etc.) which may be embedded in
and/or operate within a system, etc.

As shown in FIG. 4, method 400 may initiate with opera-
tion 402, where a DR family is defined. The DR family
comprises one or more DR clusters accessible to a DR host
and one or more production clusters accessible to a produc-
tion host. Also, the DR host is configured to replicate data
from the one or more production clusters to the one or more
DR clusters in order to create backup copies on the DR
clusters of data stored to and/or represented by virtual
instances (such as virtual tapes, virtual volumes, etc.) on the
production clusters.

In operation 404, a backup copy of data stored to the one or
more production clusters is created. These backup copies may
be virtual tapes, virtual volumes, data stored to physical
media (such as HDDs, physical tape, etc.), or any other type
of data backup known in the art.

In operation 406, the backup copy or copies is/are stored to
the one or more DR clusters. When more than one subset of
data is copied from the one or more production clusters, more
than one backup copy may be created on the one or more DR
clusters, with each DR cluster receiving at least one backup
copy of the data, in one approach.

In operation 408, a time-zero in the DR family is estab-
lished for DR testing. The entire DR family shares this time-
zero as an indicator of consistency between data on the DR
clusters and data on the production clusters. In one embodi-
ment, the time-zero represents a time selected to simulate a
disaster, as selected by a user or automatically in some func-
tion or routine executed to begin DR testing.

In operation 410, a point-in-time data consistency at the
time-zero is shared among all clusters within the DR family,
so that consistency across the entire DR family may be deter-
mined and/or established at the time-zero. By sharing the
point-in-time data consistency at the time-zero with all clus-
ters within the DR family, each cluster is capable of perform-
ing DR testing using the point-in-time data consistency at the
time-zero, which is a representation of how successful the
backing-up of data is at the time-zero.

In another embodiment, method 400 may further include
creating a snapshot of each backup copy stored to the one or
more DR clusters. Each snapshot represents data stored to the
one or more DR clusters at the time-zero. Therefore, when
DR testing is performed, it may be known which backups
were consistent with data on the production clusters at time-
Zero.

Furthermore, method 400 may include performing DR
testing using, in descending order of preference: a snapshot
from a first cluster within the DR family, a snapshot accessed
via the first cluster from a second cluster within the DR family
when the first cluster does not include an up-to-date consis-
tent snapshot, a backup copy from the first cluster, and a
backup copy from the second cluster when the first cluster

10

15

20

25

30

35

40

45

50

55

60

65

14

does not include an up-to-date consistent backup copy. In this
way, there are multiple possible sources of backup data for
use in DR testing, all available without pausing continuous
backup of the data on the production clusters.

In another further embodiment, method 400 may include
receiving a snapshot initiation request prior to creating the
snapshot. In this embodiment, the DR family is used to deter-
mine which DR clusters are affected by the snapshot initiation
request, and therefore proper data is frozen in time at the
time-zero for use in DR testing, and not all data randomly.

The snapshot is a point-in-time flash copy of at least a user
data portion of all virtual tapes of the one or DR clusters, in
one embodiment. The snapshot may be created on all DR
clusters within the DR family and/or is accessible by all DR
clusters within the DR family. Furthermore, in some
approaches, the snapshot does not include a metadata portion
of' the virtual tapes to enable faster creation thereof. Alterna-
tively, the snapshot ma selectively include a metadata portion
of any virtual tape that is in a ‘write-protected’ state, any
virtual tape where data consistency of data on the virtual tape
or key attributes of the data have been changed after a last
snapshot being taken, or any virtual tape that has been
mounted after a last snapshot being taken. This also allows for
faster creation of the snapshots.

Method 400 may be executed, implemented in, and/or
available to be performed using a system, apparatus, and/or
computer program product, according to various embodi-
ments.

According to one embodiment, an apparatus or system may
include a processor (such as a hardware and/or software pro-
cessor alone or in combination with the hardware processor)
and logic integrated with and/or executable by the processor.
The logic may be software-based, hardware-based, and/or a
combination thereof according to various approaches. Execu-
tion of the logic may cause the processor to perform method
400 or some portion thereof.

In another embodiment, a computer program product may
include a computer readable storage medium having program
code embodied therewith, the program code being readable
and/or executable by a processor. The processor may be
implemented in hardware and/or software alone or in combi-
nation, and execution of the program code may cause the
processor to perform method 400 or some portion thereof.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing, the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved, it will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of block’s in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of an embodiment of the present invention should not be

US 9,262,290 B2

15

limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:

1. A system, comprising a processor and logic integrated
with and/or executable by the processor, the logic being con-
figured to cause the processor to:

define a disaster recovery (DR) family, the DR family

comprising one or more DR clusters accessible to a DR
host and one or more production clusters accessible to a
production host, wherein the DR host is configured to
replicate data from the one or more production clusters
to the one or more DR clusters;

create a backup copy of data stored to the one or more

production clusters;

store the backup copy to the one or more DR clusters;

establish a time-zero in the DR family;

share a point-in-time data consistency at the time-zero

among all clusters within the DR family;

create a snapshot of each backup copy stored to the one or

more DR clusters, wherein each snapshot represents
data stored to the one or more DR clusters at the time-
zero; and

perform DR testing using, in descending order of prefer-

ence: a snapshot from a first cluster within the DR fam-
ily, a snapshot accessed via the first cluster from a sec-
ond cluster within the DR family when the first cluster
does not include an up-to-date consistent snapshot, a
backup copy from the first cluster, and a backup copy
from the second cluster when the first cluster does not
include an up-to-date consistent backup copy.

2. The system as recited in claim 1, wherein each cluster
comprises one or more storage nodes representing a storage
device, and wherein the time-zero represents a time selected
to simulate a disaster.

3. The system as recited in claim 1, wherein each snapshot
is a point-in-time flash copy of at least a user data portion of
all virtual tapes of the one or more DR clusters with the
proviso that each snapshot does not include a metadata por-
tion of the virtual tapes.

4. The system as recited in claim 1, wherein the logic is
further configured to cause the processor to receive a snapshot
initiation request prior to creating the snapshot, wherein the
DR family is used to determine which DR clusters are
affected by the snapshot initiation request.

5. The system as recited in claim 1, wherein the snapshot is
a point-in-time flash copy of at least a user data portion of all
virtual tapes of the one or more DR clusters.

6. The system as recited in claim 5, wherein the snapshot is
created on all DR clusters within the DR family and/or is
accessible by all DR clusters within the DR family.

7. The system as recited in claim 5, with the proviso that the
snapshot does not include a metadata portion of the virtual
tapes.

8. The system as recited in claim 5, wherein the snapshot
selectively includes a metadata portion of any virtual tape that
is in a ‘write-protected’ state.

9. The system as recited in claim 5, wherein the snapshot
selectively includes a metadata portion of the virtual tapes
only when: data consistency of data on a virtual tape or key
attributes of the data have been changed, or a virtual tape has
been mounted, after a last snapshot being taken.

10. The system as recited in claim 1, wherein each snapshot
is a point-in-time flash copy of a metadata portion selected
from a group of metadata consisting of: a virtual tape that is in
a ‘write-protected’ state, a virtual tape where data consistency
of data on the virtual tape or key attributes of the data have

5

10

15

25

30

35

40

45

16

been changed after a last snapshot being taken, or a virtual
tape that has been mounted after a last snapshot being taken.

11. A method for disaster recovery (DR) testing, the
method comprising:

defining a DR family, the DR family comprising one or

more DR dusters accessible to a DR host and one or
more production clusters accessible to a production
host, wherein the DR host is configured to replicate data
from the one or more production clusters to the one or
more DR clusters;

creating a backup copy of data stored to the one or more

production clusters;

storing the backup copy to the one or more DR clusters;

establishing a time-zero in the DR family for DR testing;

sharing a point-in-time data consistency at the time-zero
among all clusters within the DR family;

creating a snapshot of each backup copy stored to the one

or more DR clusters, wherein each snapshot represents
data stored to the one or more DR clusters at the time-
zero; and

performing DR testing using, in descending order of pref-

erence: a snapshot from a first cluster within the DR
family, a snapshot accessed via the first cluster from a
second cluster within the DR family when the first clus-
ter does not include an up-to-date consistent snapshot, a
backup copy from the first cluster, and a backup copy
from the second cluster when the first cluster does not
include an up-to-date consistent backup copy.

12. The method as recited in claim 11, wherein each cluster
comprises one or more storage nodes representing a storage
device, and wherein the time-zero represents a time selected
to simulate a disaster.

13. The method as recited in claim 11, wherein each snap-
shot is a point-in-time flash copy of at least a user data portion
of all virtual tapes of the one or more DR clusters with the
proviso that each snapshot does not include a metadata por-
tion of the virtual tapes.

14. The method as recited in claim 11, wherein each snap-
shot is a point-in-time flash copy of a metadata portion
selected from a group of metadata consisting of: a virtual tape
that is in a ‘write-protected’ state, a virtual tape where data
consistency of data on the virtual tape or key attributes of the
data have been changed after a last snapshot being taken, ora
virtual tape that has been mounted after a last snapshot being
taken.

15. The method as recited in claim 11, further comprising
receiving a snapshot initiation request prior to creating the
snapshot, wherein the DR family is used to determine which
DR clusters are affected by the snapshot initiation request.

16. The method as recited in claim 11, wherein the snap-
shot is a point-in-time flash copy of at least a user data portion
ofall virtual tapes of the one or more DR clusters, wherein the
snapshot is created on all DR clusters within the DR family
and/or is accessible by all DR clusters within the DR family.

17. The method as recited in claim 16, with the proviso that
the snapshot does not include a metadata portion of the virtual
tapes.

18. The method as recited in claim 16, wherein the snap-
shot selectively includes a metadata portion of: any virtual
tape that is in a ‘write-protected’ state, any virtual tape where
data consistency of data on the virtual tape or key attributes of
the data have been changed after a last snapshot being taken,
or any virtual tape that has been mounted after a last snapshot
being taken.

19. A computer program product for disaster recovery
(DR) testing, the computer program product comprising a
non-transitory computer readable storage medium having

US 9,262,290 B2

17 18
program code embodied therewith, the program code being from the second cluster when the first cluster does not
readable and/or executable by a processor to: include an up-to-date consistent backup copy.
define a DR family, the DR family comprising one or more 20. The computer program product as recited in claim 19,
DR clusters accessible to a DR host and one or more wherein the program code is further readable and/or execut-
production clusters accessible to a production host, 3 able by the processor to:
wherein the DR host is configured to replicate data from receive a snapshot initiation request to create a snapshot of
the one or more production clusters to the one or more each backup copy stored to the one or more DR clusters,
DR clusters: wherein the DR family is used to determine which DR
create a backlip copy of data stored to the one or more clusters are affected by the snapshot initiation request;
10 and

production clusters;

store the backup copy to the one or more DR clusters;

establish a time-zero in the DR family;

share a point-in-time data consistency at the time-zero
among all clusters within the DR family; and

perform DR testing using, in descending order of prefer-
ence: a snapshot from a first cluster within the DR fam-
ily, a snapshot accessed via the first cluster from a sec-

create a snapshot of each backup copy stored to the one or
more DR clusters, wherein each snapshot represents
data stored to the one or more DR clusters at the time-

Zero,
15 wherein each snapshot is a point-in-time flash copy of at
least a user data portion of all virtual tapes of the one or
more DR clusters, and wherein each snapshot is created

ond duster within the DR family when the first cluster O%fllbDR ﬁl}gsft{e(ri s within t,hﬁ:, Dfl{l faglfl{bif anfil/or is acces-
does not include an up-to-date consistent snapshot, a siole by a usters within the amly.
backup copy from the first cluster, and a backup copy ¥ % % % %

